Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long-span… asymptotics and Extreme Value Theory (EVT) approximations for consistently estimating the tail decay parameters and asymptotic tail dependencies. On implementing the new estimation procedures with a panel of highfrequency intraday prices for a large cross-section of individual stocks and the aggregate S&P 500 market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and not necessarily symmetric. Our estimates also point to the existence of strong dependencies between the market-wide jumps and the corresponding systematic jump tails for all of the stocks in the sample. We also show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day temporal variation in the volatility are able to explain the “extreme” dependencies vis-a-vis the market portfolio.