A Cholesky-MIDAS model for predicting stock portfolio volatility

This paper presents a simple forecasting technique for variance covariance matrices. It relies significantly on the contribution of Chiriac and Voev (2010) who propose to forecast elements of the Cholesky decomposition which recombine to form a positive definite forecast for the variance covarian… ce matrix. The method proposed here combines this methodology with advances made in the MIDAS literature to produce a forecasting methodology that is flexible, scales easily with the size of the portfolio and produces superior forecasts in simulation experiments and an empirical application.